Indium Corporation Liquid Metal Thermal Interface Material

Description
Several very low melting point Indalloy® alloys are liquid at room temperature. These gallium-based alloys are finding increased use in various applications as a replacement for toxic mercury, which has a high vapor pressure at room temperature. These alloys have reduced toxicity and lower vapor pressure than mercury. Excellent Thermal and Electrical Conductivity Alloy systems that are liquid at room temperature have a high degree of thermal conductivity far superior to ordinary nonmetallic liquids. This results in the use of these materials for specific heat conducting and/or dissipation applications. Other advantages of these liquid alloy systems are their inherent high densities and electrical conductivities. Extraordinary Wetting Ability to Both Metallic and Non-Metallic Surfaces These alloys will wet most metallic surfaces once oxides have been sufficiently removed from the substrate surface. However, gallium is very reactive with some metals, even at room temperature. At high temperatures, gallium dissolves most metals, although a number, including Na, K, Au, Mg, Pb, Ni and interestingly Hg, are only slightly soluble at moderate temperatures.1 Gallium and the gallium alloys, like indium, have the ability to wet to many non-metallic surfaces such as glass and quartz. Gently rubbing the gallium alloy into the surface may help induce wetting. Note: These alloys form a thin dull looking oxide skin that is easily dispersed with mild agitation. The oxide-free surfaces are bright and lustrous. Applications Typical applications for these materials include thermostats, switches, barometers, heat transfer systems, and thermal cooling and heating designs. Uniquely, they can be used to conduct heat and/or electricity between non-metallic and metallic surfaces.
Description
Several very low melting point Indalloy® alloys are liquid at room temperature. These gallium-based alloys are finding increased use in various applications as a replacement for toxic mercury, which has a high vapor pressure at room temperature. These alloys have reduced toxicity and lower vapor pressure than mercury. Excellent Thermal and Electrical Conductivity Alloy systems that are liquid at room temperature have a high degree of thermal conductivity far superior to ordinary nonmetallic liquids. This results in the use of these materials for specific heat conducting and/or dissipation applications. Other advantages of these liquid alloy systems are their inherent high densities and electrical conductivities. Extraordinary Wetting Ability to Both Metallic and Non-Metallic Surfaces These alloys will wet most metallic surfaces once oxides have been sufficiently removed from the substrate surface. However, gallium is very reactive with some metals, even at room temperature. At high temperatures, gallium dissolves most metals, although a number, including Na, K, Au, Mg, Pb, Ni and interestingly Hg, are only slightly soluble at moderate temperatures.1 Gallium and the gallium alloys, like indium, have the ability to wet to many non-metallic surfaces such as glass and quartz. Gently rubbing the gallium alloy into the surface may help induce wetting. Note: These alloys form a thin dull looking oxide skin that is easily dispersed with mild agitation. The oxide-free surfaces are bright and lustrous. Applications Typical applications for these materials include thermostats, switches, barometers, heat transfer systems, and thermal cooling and heating designs. Uniquely, they can be used to conduct heat and/or electricity between non-metallic and metallic surfaces.

Suppliers

Company
Product
Description
Supplier Links
Liquid Metal Thermal Interface Material -  - Indium Corporation
Clinton, NY, USA
Liquid Metal Thermal Interface Material
Liquid Metal Thermal Interface Material
Several very low melting point Indalloy® alloys are liquid at room temperature. These gallium-based alloys are finding increased use in various applications as a replacement for toxic mercury, which has a high vapor pressure at room temperature. These alloys have reduced toxicity and lower vapor pressure than mercury. Excellent Thermal and Electrical Conductivity Alloy systems that are liquid at room temperature have a high degree of thermal conductivity far superior to ordinary nonmetallic liquids. This results in the use of these materials for specific heat conducting and/or dissipation applications. Other advantages of these liquid alloy systems are their inherent high densities and electrical conductivities. Extraordinary Wetting Ability to Both Metallic and Non-Metallic Surfaces These alloys will wet most metallic surfaces once oxides have been sufficiently removed from the substrate surface. However, gallium is very reactive with some metals, even at room temperature. At high temperatures, gallium dissolves most metals, although a number, including Na, K, Au, Mg, Pb, Ni and interestingly Hg, are only slightly soluble at moderate temperatures.1 Gallium and the gallium alloys, like indium, have the ability to wet to many non-metallic surfaces such as glass and quartz. Gently rubbing the gallium alloy into the surface may help induce wetting. Note: These alloys form a thin dull looking oxide skin that is easily dispersed with mild agitation. The oxide-free surfaces are bright and lustrous. Applications Typical applications for these materials include thermostats, switches, barometers, heat transfer systems, and thermal cooling and heating designs. Uniquely, they can be used to conduct heat and/or electricity between non-metallic and metallic surfaces.

Several very low melting point Indalloy® alloys are liquid at room temperature. These gallium-based alloys are finding increased use in various applications as a replacement for toxic mercury, which has a high vapor pressure at room temperature. These alloys have reduced toxicity and lower vapor pressure than mercury.

Excellent Thermal and Electrical Conductivity

Alloy systems that are liquid at room temperature have a high degree of thermal conductivity far superior to ordinary nonmetallic liquids. This results in the use of these materials for specific heat conducting and/or dissipation applications. Other advantages of these liquid alloy systems are their inherent high densities and electrical conductivities.

Extraordinary Wetting Ability to Both Metallic and Non-Metallic Surfaces

These alloys will wet most metallic surfaces once oxides have been sufficiently removed from the substrate surface. However, gallium is very reactive with some metals, even at room temperature. At high temperatures, gallium dissolves most metals, although a number, including Na, K, Au, Mg, Pb, Ni and interestingly Hg, are only slightly soluble at moderate temperatures.1

Gallium and the gallium alloys, like indium, have the ability to wet to many non-metallic surfaces such as glass and quartz. Gently rubbing the gallium alloy into the surface may help induce wetting.

Note: These alloys form a thin dull looking oxide skin that is easily dispersed with mild agitation. The oxide-free surfaces are bright and lustrous.

Applications

Typical applications for these materials include thermostats, switches, barometers, heat transfer systems, and thermal cooling and heating designs. Uniquely, they can be used to conduct heat and/or electricity between non-metallic and metallic surfaces.

Supplier's Site

Technical Specifications

  Indium Corporation
Product Category Thermal Compounds and Thermal Interface Materials
Product Name Liquid Metal Thermal Interface Material
Form / Shape Liquid
Unlock Full Specs
to access all available technical data