IEEE - Institute of Electrical and Electronics Engineers, Inc. An Introduction to Duplicate Detection

Description
With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle all pairs of records should be compared, which is infeasible for large volumes of data. This lecture examines closely the two main components to overcome these difficulties: (i) Similarity measures are used to automatically identify duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in search for duplicates. Well-designed algorithms improve the efficiency of duplicate detection. Finally, we discuss methods to evaluate the success of duplicate detection. Table of Contents: Data Cleansing: Introduction and Motivation / Problem Definition / Similarity Functions / Duplicate Detection Algorithms / Evaluating Detection Success / Conclusion and Outlook / Bibliography
Request a Quote

Suppliers

Company
Product
Description
Supplier Links
An Introduction to Duplicate Detection -  - IEEE -  Institute of Electrical and Electronics Engineers, Inc.
Piscataway, NJ, USA
An Introduction to Duplicate Detection
An Introduction to Duplicate Detection
With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle all pairs of records should be compared, which is infeasible for large volumes of data. This lecture examines closely the two main components to overcome these difficulties: (i) Similarity measures are used to automatically identify duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in search for duplicates. Well-designed algorithms improve the efficiency of duplicate detection. Finally, we discuss methods to evaluate the success of duplicate detection. Table of Contents: Data Cleansing: Introduction and Motivation / Problem Definition / Similarity Functions / Duplicate Detection Algorithms / Evaluating Detection Success / Conclusion and Outlook / Bibliography

With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle all pairs of records should be compared, which is infeasible for large volumes of data. This lecture examines closely the two main components to overcome these difficulties: (i) Similarity measures are used to automatically identify duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in search for duplicates. Well-designed algorithms improve the efficiency of duplicate detection. Finally, we discuss methods to evaluate the success of duplicate detection. Table of Contents: Data Cleansing: Introduction and Motivation / Problem Definition / Similarity Functions / Duplicate Detection Algorithms / Evaluating Detection Success / Conclusion and Outlook / Bibliography

Supplier's Site

Technical Specifications

  IEEE - Institute of Electrical and Electronics Engineers, Inc.
Product Category Technical Books
Product Name An Introduction to Duplicate Detection
Unlock Full Specs
to access all available technical data

Similar Products

A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems -  - IEEE -  Institute of Electrical and Electronics Engineers, Inc.
IEEE - Institute of Electrical and Electronics Engineers, Inc.
View Details
Application Design for Wearable Computing -  - IEEE -  Institute of Electrical and Electronics Engineers, Inc.
IEEE - Institute of Electrical and Electronics Engineers, Inc.
View Details
A Survey of Photometric Stereo Techniques -  - IEEE -  Institute of Electrical and Electronics Engineers, Inc.
IEEE - Institute of Electrical and Electronics Engineers, Inc.
View Details