NETZSCH-Gerätebau GmbH Trend-Setting Technology - Thermomechanical Analyzer: TMA 402 F1/F3 Hyperion®

Description
TMA 402 F1/F3 Hyperion® - Thermomechanical Analyzer The heart of the TMA 402 Hyperion® is a highly precise inductive displacement transducer (LVDT) This technology has stood the test of time; it is also used for dilatometers and allows measurement of even the smallest of length changes, into the nanometer range (digital resolution of 0.125 nm). Vacuum-tight thermostatic measuring system The entire TMA 402 Hyperion® measuring system is thermally stabilized via water-cooling. This ensures that the measurement will not be influenced by heat from the furnace or by temperature fluctuations in the local environment. All joints have a vacuum-tight design to allow measurements in a highly pure atmosphere or under vacuum. Pressures of less than 10-4 mbar can be achieved in the TMA 402 F1/F3 Hyperion® with the use of a turbo molecular pump. In combination with the integrated mass flow controllers (MFC) for purge and protective gases (optional in the TMA 402 F3 Hyperion®), measurements in highly pure inert gas or in oxidizing atmospheres can be optimally controlled. Simultaneous measurement of force and displacement signal The force operating on the sample is generated electromagnetically in the TMA 402 Hyperion®. This guarantees a quick response time for experiments with a changing load, e.g. tests on creep behavior. A highly sensitive force sensor (digital resolution < 0.01 mN) continuously measures the force exerted via the push rod and readjusts it automatically. This sets the TMA 402 Hyperion® apart from other instruments, which use only preset values. Precise force control The electronic control system for the TMA 402 Hyperion® allows forces to be set in the mN-range. This enables testing even on sensitive materials such as thin fibers or films. The force operating on the sample can be altered via the software in a stepwise or linear fashion. This makes it particularly simple to carry out such analyses as creep or stress sweep tests. The premium version of the TMA 402 Hyperion®, the TMA 402 F1 Hyperion®, provides even more capabilities. From single pulse in rectangular or ramp form to continuous modulation with a freely selectable frequency (up to 1 Hz), every possibility is covered. This model is particularly well-suited for determining visco-elastic material properties such as elasticity and creep modulus.

Suppliers

Company
Product
Description
Supplier Links
Trend-Setting Technology - Thermomechanical Analyzer: TMA 402 F1/F3 Hyperion® -  - NETZSCH-Gerätebau GmbH
Selb, Germany
Trend-Setting Technology - Thermomechanical Analyzer: TMA 402 F1/F3 Hyperion®
Trend-Setting Technology - Thermomechanical Analyzer: TMA 402 F1/F3 Hyperion®
TMA 402 F1/F3 Hyperion® - Thermomechanical Analyzer The heart of the TMA 402 Hyperion® is a highly precise inductive displacement transducer (LVDT) This technology has stood the test of time; it is also used for dilatometers and allows measurement of even the smallest of length changes, into the nanometer range (digital resolution of 0.125 nm). Vacuum-tight thermostatic measuring system The entire TMA 402 Hyperion® measuring system is thermally stabilized via water-cooling. This ensures that the measurement will not be influenced by heat from the furnace or by temperature fluctuations in the local environment. All joints have a vacuum-tight design to allow measurements in a highly pure atmosphere or under vacuum. Pressures of less than 10-4 mbar can be achieved in the TMA 402 F1/F3 Hyperion® with the use of a turbo molecular pump. In combination with the integrated mass flow controllers (MFC) for purge and protective gases (optional in the TMA 402 F3 Hyperion®), measurements in highly pure inert gas or in oxidizing atmospheres can be optimally controlled. Simultaneous measurement of force and displacement signal The force operating on the sample is generated electromagnetically in the TMA 402 Hyperion®. This guarantees a quick response time for experiments with a changing load, e.g. tests on creep behavior. A highly sensitive force sensor (digital resolution < 0.01 mN) continuously measures the force exerted via the push rod and readjusts it automatically. This sets the TMA 402 Hyperion® apart from other instruments, which use only preset values. Precise force control The electronic control system for the TMA 402 Hyperion® allows forces to be set in the mN-range. This enables testing even on sensitive materials such as thin fibers or films. The force operating on the sample can be altered via the software in a stepwise or linear fashion. This makes it particularly simple to carry out such analyses as creep or stress sweep tests. The premium version of the TMA 402 Hyperion®, the TMA 402 F1 Hyperion®, provides even more capabilities. From single pulse in rectangular or ramp form to continuous modulation with a freely selectable frequency (up to 1 Hz), every possibility is covered. This model is particularly well-suited for determining visco-elastic material properties such as elasticity and creep modulus.

TMA 402 F1/F3 Hyperion® - Thermomechanical Analyzer

The heart of the TMA 402 Hyperion® is a highly precise inductive displacement transducer (LVDT)
This technology has stood the test of time; it is also used for dilatometers and allows measurement of even the smallest of length changes, into the nanometer range (digital resolution of 0.125 nm).

Vacuum-tight thermostatic measuring system
The entire TMA 402 Hyperion® measuring system is thermally stabilized via water-cooling. This ensures that the measurement will not be influenced by heat from the furnace or by temperature fluctuations in the local environment.

All joints have a vacuum-tight design to allow measurements in a highly pure atmosphere or under vacuum. Pressures of less than 10-4 mbar can be achieved in the TMA 402 F1/F3 Hyperion® with the use of a turbo molecular pump. In combination with the integrated mass flow controllers (MFC) for purge and protective gases (optional in the TMA 402 F3 Hyperion®), measurements in highly pure inert gas or in oxidizing atmospheres can be optimally controlled.

Simultaneous measurement of force and displacement signal
The force operating on the sample is generated electromagnetically in the TMA 402 Hyperion®. This guarantees a quick response time for experiments with a changing load, e.g. tests on creep behavior. A highly sensitive force sensor (digital resolution < 0.01 mN) continuously measures the force exerted via the push rod and readjusts it automatically. This sets the TMA 402 Hyperion® apart from other instruments, which use only preset values.

Precise force control
The electronic control system for the TMA 402 Hyperion® allows forces to be set in the mN-range. This enables testing even on sensitive materials such as thin fibers or films. The force operating on the sample can be altered via the software in a stepwise or linear fashion. This makes it particularly simple to carry out such analyses as creep or stress sweep tests. The premium version of the TMA 402 Hyperion®, the TMA 402 F1 Hyperion®, provides even more capabilities. From single pulse in rectangular or ramp form to continuous modulation with a freely selectable frequency (up to 1 Hz), every possibility is covered. This model is particularly well-suited for determining visco-elastic material properties such as elasticity and creep modulus.

Supplier's Site

Technical Specifications

  NETZSCH-Gerätebau GmbH
Product Category Calorimeters and Thermal Analyzers
Product Name Trend-Setting Technology - Thermomechanical Analyzer: TMA 402 F1/F3 Hyperion®
Thermal Analyzer Type Thermal Mechanical Analyzer
Properties Measured Dimensional Changes of Solids, Liquids or Pasty Materials
Features Cooling; Temperature Control
Certifications DIN 51 005, ASTM E 831, ASTM D 696, ASTM D 3386, ISO 11359 – Parts 1 to 3)
Unlock Full Specs
to access all available technical data

Similar Products

Aquapal III Moisture Analyzer -  - CSC Scientific Company, Inc.
CSC Scientific Company, Inc.
Specs
Thermal Analyzer Type Moisture
Remote Interface Computer Interface
View Details
Differential Scanning Calorimeter - HD-R824 - Haida International Equipment Co., Ltd.
Haida International Equipment Co., Ltd.
Specs
Temperature Range 500 C (932 F)
Remote Interface Computer Interface
View Details
Xenon Flash Thermal Constant Analyzer - XFA 600 - Linseis Inc.
Specs
Thermal Analyzer Type Thermal Conductivity
Properties Measured Thermal Conductivity And Diffusivity
Thermal Analyzer Performance Specs 0.01 mm2/s - 1000 mm2/s, 0.1 W/mk ... 2000 W/mK, Round or Square Samples
View Details
Differential Thermogravimetric Analyzer - TG-DTA 8120 - Rigaku Corporation
Specs
Thermal Analyzer Type Differential Thermal Analysis; Thermal Gravimetric Analyzer
Thermal Analyzer Performance Specs Weight
Features Cooling; Temperature Control
View Details